[1] WILLE R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts // RIVAL L, ed. Ordered Sets. Boston, USA: Springer, 1982: 445-470.
[2] GANTER B, WILLE R. Formal Concept Analysis: Mathematical Foundations. New York, USA: Springer-Verlag, 1999.
[3] 刘旭龙,洪文学,张 涛,等.基于形式概念分析的中医辨证可视化方法.燕山大学学报, 2010, 34(2): 162-168.
(LIU X L, HONG W X, ZHANG T, et al. A Visual Approach Used to Assess Severity of Facial Paralysis. Journal of Yanshan University, 2010, 34(2): 162-168.)
[4] KANG X P, LI D Y, WANG S G. Research on Domain Ontology in Different Granulations Based on Concept Lattice. Knowledge-Based Systems, 2012, 27: 152-161.
[5] WU W Z, LEUNG Y, MI J S. Granular Computing and Knowledge Reduction in Formal Contexts. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1461-1474.
[6] 王 燕,王国胤,邓维斌.基于概念格的数据驱动不确定知识获取.模式识别与人工智能, 2007, 20(5): 636-642.
(WANG Y, WANG G Y, DENG W B. Concept Lattice Based Data-Driven Uncertain Knowledge Acquisition. Pattern Recognition and Artificial Intelligence, 2007, 20(5): 636-642.)
[7] 胡学钢,薛 峰,张玉红,等.基于概念格的决策表属性约简方法.模式识别与人工智能, 2009, 22(4): 624-629.
(HU X G, XUE F, ZHANG Y H, et al. Attribute Reduction Metho-ds of Decision Table Based on Concept Lattice. Pattern Recognition and Artificial Intelligence, 2009, 22(4): 624-629.)
[8] CHEUNG K S, VOGEL D. Complexity Reduction in Lattice Based Information Retrieval. Information Retrieval, 2005, 8(2): 285-299.
[9] WEI L, HE M. Concept Lattice Compression Based on K-means // Proc of the International Conference on Machine Learning and Cybernetics. Washington, USA: IEEE, 2013: 802-807.
[10] KUMAR C A, SRINIVAS S. Concept Lattice Reduction Using Fuzzy K-means Clustering. Expert Systems with Applications, 2010, 37(3): 2696-2704.
[11] DORING C, LESOT M J, KRUSE R. Data Analysis with Fuzzy Clustering Methods. Computational Statistics and Data Analysis, 2006, 51(1): 192-214.
[12] 魏 玲,李 强.面向属性概念格基于覆盖的压缩.电子科技大学学报, 2012, 41(2): 299-304.
(WEI L, LI Q. Covering-Based Reduction of Property-Oriented Concept Lattices. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 299-304.)
[13] 周秀秀,李建卓.基于粗糙集理论的面向属性概念格动态压缩.计算机科学, 2013, 40(11A): 136-139.
(ZHOU X X, LI J Z. Dynamic Compression of Property Oriented Concept Lattices Based on Rough Set Theory. Computer Science, 2013, 40(11A): 136-139.)
[14] LI C P, LI J H, HE M. Concept Lattice Compression in Incomplete Contexts Based on K-medoids Clustering. International Journal of Machine Learning and Cybernetics, 2016, 7(4): 539-552.
[15] YAO Y Y. An Outline of a Theory of Three-Way Decisions // Proc of the 8th International Conference on Rough Sets and Current Trends in Computing. Berlin, Germany: Springer, 2012: 1-17.
[16] QI J J, WEI L, YAO Y Y. Three-Way Formal Concept Analysis // Proc of the International Conference on Rough Sets and Know-ledge Technology. Berlin, Germany: Springer, 2014: 732-741.
[17] REN R S, WEI L. The Attribute Reductions of Three-Way Concept Lattices. Knowledge-Based Systems, 2016, 99: 92-102.
[18] 陈 雪,魏 玲,钱 婷.基于AE-概念格的决策形式背景属性约简.山东大学学报(理学版), 2017, 52(12): 95-103.
(CHEN X, WEI L, QIAN T. Attribute Reduction in Formal Decision Contexts Based on AE-Concept Lattices. Journal of Shandong University(Natural Science), 2017, 52(12): 95-103.)
[19] 刘 琳,钱 婷,魏 玲.基于属性导出三支概念格的决策背景规则提取.西北大学学报(自然科学版), 2016, 46(4): 481-487.
(LIU L, QIAN T, WEI L. Rules Extraction in Formal Decision Contexts Based on Attribute-Induced Three-Way Concept Lattices. Journal of Northwest University(Natural Science Edition), 2016, 46(4): 481-487.)
[20] 刘 琳,钱 婷,魏 玲.决策形式背景中具有置信度的三支规则提取.山东大学学报(理学版), 2017, 52(2): 101-110.
(LIU L, QIAN T, WEI L. Three-Way Rules Extraction in Formal Decision Contexts with Confidence. Journal of Shandong University(Natural Science), 2017, 52(2): 101-110.)
[21] QI J J, QIAN T, WEI L. The Connections between Three-Way and Classical Concept Lattices. Knowledge-Based Systems, 2016, 91: 143-151.
[22] 汪文威,祁建军.三支概念的构建算法.西安电子科技大学学报(自然科学版), 2017, 44(1): 71-76.
(WANG W W, QI J J. Algorithm for Constructing Three-Way Concepts. Journal of Xidian University, 2017, 44(1): 71-76.)
[23] 祁建军,汪文威.多线程并行构建三支概念.西安交通大学学报, 2017, 51(3): 116-121.
(QI J J, WANG W W. A Multithreaded Parallel Algorithm for Constructing Three-Way Concepts. Journal of Xi′an Jiaotong University, 2017, 51(3): 116-121.) [24] QIAN T, WEI L, QI J J. Constructing Three-Way Concept Lattices Based on Apposition and Subposition of Formal Contexts. Know-ledge-Based Systems, 2017, 116: 39-48.
[25] 李金海,邓 硕.概念格与三支决策及其研究展望.西北大学学报(自然科学版), 2017, 47(3): 321-329.
(LI J H, DENG S. Concept Lattice, Three-Way Decisions and Their Research Outlooks. Journal of Northwest University(Natural Science Edition), 2017, 47(3): 321-329.)
[26] HUANG Z X. Extensions to the K-means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Know-ledge Discovery, 1998, 2(3): 283-304.
[27] 周志华.机器学习.北京:清华大学出版社. 2016.
(ZHOU Z H. Machine Learning. Beijing, China: Tsinghua University Press, 2016.)
[28] 王 霞.概念格的约简理论与方法研究.西安:西安交通大学出版社, 2008.
(WANG X. Research on Reduction Theory and Approaches to Concept Lattices. Xi′an, China: Xi′an Jiaotong University Press, 2008.)
[29] CAO F Y, LIANG J Y, BAI L. A New Initialization Method for Categorical Data Clustering. Expert Systems with Applications, 2009, 36(7): 10223-10228. |